Metric Dependence and Asymptotic Minimization of the Expected Number of Critical Points of Random Holomorphic Sections

نویسنده

  • BENJAMIN BAUGHER
چکیده

Abstract. We prove the main conjecture from [DSZ2] concerning the metric dependence and asymptotic minimization of the expected number N crit N,h of critical points of random holomorphic sections of the Nth tensor power of a positive line bundle. The first nontopological term in the asymptotic expansion of N crit N,h is the the Calabi functional multiplied by the constant β2(m) which depends only on the dimension of the manifold. We prove that β2(m) is strictly positive in all dimensions, showing that the expansion is non-topological for all m, and that the Calabi extremal metric, when it exists, asymptotically minimizes N crit N,h.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics and Dimensional Dependence of the Number of Critical Points of Random Holomorphic Sections

Abstract. We prove two conjectures from [DSZ2, DSZ3] concerning the expected number of critical points of random holomorphic sections of a positive line bundle. We show that, on average, the critical points of minimal Morse index are the most plentiful for holomorphic sections of O(N) → CPm and, in an asymptotic sense, for those of line bundles over general Kähler manifolds. We calculate the ex...

متن کامل

ec 2 00 5 CRITICAL POINTS AND SUPERSYMMETRIC VACUA , II : ASYMPTOTICS AND EXTREMAL METRICS

Motivated by the vacuum selection problem of string/M theory, we study a new geometric invariant of a positive Hermitian line bundle (L, h) → M over a compact Kähler manifold: the expected distribution of critical points of a Gaussian random holomorphic section s ∈ H(M,L) with respect to the Chern connection ∇h. It is a measure on M whose total mass is the average number N crit h of critical po...

متن کامل

ar X iv : m at h . C V / 0 40 60 89 v 1 5 J un 2 00 4 CRITICAL POINTS AND SUPERSYMMETRIC VACUA , II : ASYMPTOTICS AND EXTREMAL METRICS

Motivated by the vacuum selection problem of string/M theory, we study a new geometric invariant of a positive hermitian line bundle (L, h) → M over a compact Kähler manifold: the expected distribution Kcrit h (z) of critical points d log |s(z)|h = 0 of a Gaussian random holomorphic section s ∈ H(M,L) with respect to h. It is a measure on M whose total mass is the average number N crit h of cri...

متن کامل

J un 2 00 4 CRITICAL POINTS AND SUPERSYMMETRIC VACUA , II : ASYMPTOTICS AND EXTREMAL METRICS

Motivated by the vacuum selection problem of string/M theory, we study a new geometric invariant of a positive hermitian line bundle (L, h) → M over a compact Kähler manifold: the expected distribution Kcrit h (z) of critical points d log |s(z)|h = 0 of a Gaussian random holomorphic section s ∈ H(M,L) with respect to h. It is a measure on M whose total mass is the average number N crit h of cri...

متن کامل

J ul 2 00 4 CRITICAL POINTS AND SUPERSYMMETRIC VACUA , II : ASYMPTOTICS AND EXTREMAL METRICS

Motivated by the vacuum selection problem of string/M theory, we study a new geometric invariant of a positive Hermitian line bundle (L, h) → M over a compact Kähler manifold: the expected distribution Kcrit h (z) of critical points d log |s(z)|h = 0 of a Gaussian random holomorphic section s ∈ H(M,L) with respect to h. It is a measure on M whose total mass is the average number N crit h of cri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008